3.216 \(\int \cos ^3(c+d x) (B \cos (c+d x)+C \cos ^2(c+d x)) \, dx\)

Optimal. Leaf size=92 \[ \frac{B \sin (c+d x) \cos ^3(c+d x)}{4 d}+\frac{3 B \sin (c+d x) \cos (c+d x)}{8 d}+\frac{3 B x}{8}+\frac{C \sin ^5(c+d x)}{5 d}-\frac{2 C \sin ^3(c+d x)}{3 d}+\frac{C \sin (c+d x)}{d} \]

[Out]

(3*B*x)/8 + (C*Sin[c + d*x])/d + (3*B*Cos[c + d*x]*Sin[c + d*x])/(8*d) + (B*Cos[c + d*x]^3*Sin[c + d*x])/(4*d)
 - (2*C*Sin[c + d*x]^3)/(3*d) + (C*Sin[c + d*x]^5)/(5*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0909403, antiderivative size = 92, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.179, Rules used = {3010, 2748, 2635, 8, 2633} \[ \frac{B \sin (c+d x) \cos ^3(c+d x)}{4 d}+\frac{3 B \sin (c+d x) \cos (c+d x)}{8 d}+\frac{3 B x}{8}+\frac{C \sin ^5(c+d x)}{5 d}-\frac{2 C \sin ^3(c+d x)}{3 d}+\frac{C \sin (c+d x)}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^3*(B*Cos[c + d*x] + C*Cos[c + d*x]^2),x]

[Out]

(3*B*x)/8 + (C*Sin[c + d*x])/d + (3*B*Cos[c + d*x]*Sin[c + d*x])/(8*d) + (B*Cos[c + d*x]^3*Sin[c + d*x])/(4*d)
 - (2*C*Sin[c + d*x]^3)/(3*d) + (C*Sin[c + d*x]^5)/(5*d)

Rule 3010

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x
_Symbol] :> Dist[1/b, Int[(b*Sin[e + f*x])^(m + 1)*(B + C*Sin[e + f*x]), x], x] /; FreeQ[{b, e, f, B, C, m}, x
]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2633

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rubi steps

\begin{align*} \int \cos ^3(c+d x) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx &=\int \cos ^4(c+d x) (B+C \cos (c+d x)) \, dx\\ &=B \int \cos ^4(c+d x) \, dx+C \int \cos ^5(c+d x) \, dx\\ &=\frac{B \cos ^3(c+d x) \sin (c+d x)}{4 d}+\frac{1}{4} (3 B) \int \cos ^2(c+d x) \, dx-\frac{C \operatorname{Subst}\left (\int \left (1-2 x^2+x^4\right ) \, dx,x,-\sin (c+d x)\right )}{d}\\ &=\frac{C \sin (c+d x)}{d}+\frac{3 B \cos (c+d x) \sin (c+d x)}{8 d}+\frac{B \cos ^3(c+d x) \sin (c+d x)}{4 d}-\frac{2 C \sin ^3(c+d x)}{3 d}+\frac{C \sin ^5(c+d x)}{5 d}+\frac{1}{8} (3 B) \int 1 \, dx\\ &=\frac{3 B x}{8}+\frac{C \sin (c+d x)}{d}+\frac{3 B \cos (c+d x) \sin (c+d x)}{8 d}+\frac{B \cos ^3(c+d x) \sin (c+d x)}{4 d}-\frac{2 C \sin ^3(c+d x)}{3 d}+\frac{C \sin ^5(c+d x)}{5 d}\\ \end{align*}

Mathematica [A]  time = 0.139672, size = 89, normalized size = 0.97 \[ \frac{3 B (c+d x)}{8 d}+\frac{B \sin (2 (c+d x))}{4 d}+\frac{B \sin (4 (c+d x))}{32 d}+\frac{C \sin ^5(c+d x)}{5 d}-\frac{2 C \sin ^3(c+d x)}{3 d}+\frac{C \sin (c+d x)}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^3*(B*Cos[c + d*x] + C*Cos[c + d*x]^2),x]

[Out]

(3*B*(c + d*x))/(8*d) + (C*Sin[c + d*x])/d - (2*C*Sin[c + d*x]^3)/(3*d) + (C*Sin[c + d*x]^5)/(5*d) + (B*Sin[2*
(c + d*x)])/(4*d) + (B*Sin[4*(c + d*x)])/(32*d)

________________________________________________________________________________________

Maple [A]  time = 0.015, size = 70, normalized size = 0.8 \begin{align*}{\frac{1}{d} \left ({\frac{C\sin \left ( dx+c \right ) }{5} \left ({\frac{8}{3}}+ \left ( \cos \left ( dx+c \right ) \right ) ^{4}+{\frac{4\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}}{3}} \right ) }+B \left ({\frac{\sin \left ( dx+c \right ) }{4} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{3}+{\frac{3\,\cos \left ( dx+c \right ) }{2}} \right ) }+{\frac{3\,dx}{8}}+{\frac{3\,c}{8}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^3*(B*cos(d*x+c)+C*cos(d*x+c)^2),x)

[Out]

1/d*(1/5*C*(8/3+cos(d*x+c)^4+4/3*cos(d*x+c)^2)*sin(d*x+c)+B*(1/4*(cos(d*x+c)^3+3/2*cos(d*x+c))*sin(d*x+c)+3/8*
d*x+3/8*c))

________________________________________________________________________________________

Maxima [A]  time = 1.05114, size = 93, normalized size = 1.01 \begin{align*} \frac{15 \,{\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} B + 32 \,{\left (3 \, \sin \left (d x + c\right )^{5} - 10 \, \sin \left (d x + c\right )^{3} + 15 \, \sin \left (d x + c\right )\right )} C}{480 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(B*cos(d*x+c)+C*cos(d*x+c)^2),x, algorithm="maxima")

[Out]

1/480*(15*(12*d*x + 12*c + sin(4*d*x + 4*c) + 8*sin(2*d*x + 2*c))*B + 32*(3*sin(d*x + c)^5 - 10*sin(d*x + c)^3
 + 15*sin(d*x + c))*C)/d

________________________________________________________________________________________

Fricas [A]  time = 1.66314, size = 173, normalized size = 1.88 \begin{align*} \frac{45 \, B d x +{\left (24 \, C \cos \left (d x + c\right )^{4} + 30 \, B \cos \left (d x + c\right )^{3} + 32 \, C \cos \left (d x + c\right )^{2} + 45 \, B \cos \left (d x + c\right ) + 64 \, C\right )} \sin \left (d x + c\right )}{120 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(B*cos(d*x+c)+C*cos(d*x+c)^2),x, algorithm="fricas")

[Out]

1/120*(45*B*d*x + (24*C*cos(d*x + c)^4 + 30*B*cos(d*x + c)^3 + 32*C*cos(d*x + c)^2 + 45*B*cos(d*x + c) + 64*C)
*sin(d*x + c))/d

________________________________________________________________________________________

Sympy [A]  time = 2.37452, size = 173, normalized size = 1.88 \begin{align*} \begin{cases} \frac{3 B x \sin ^{4}{\left (c + d x \right )}}{8} + \frac{3 B x \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{4} + \frac{3 B x \cos ^{4}{\left (c + d x \right )}}{8} + \frac{3 B \sin ^{3}{\left (c + d x \right )} \cos{\left (c + d x \right )}}{8 d} + \frac{5 B \sin{\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{8 d} + \frac{8 C \sin ^{5}{\left (c + d x \right )}}{15 d} + \frac{4 C \sin ^{3}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{3 d} + \frac{C \sin{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{d} & \text{for}\: d \neq 0 \\x \left (B \cos{\left (c \right )} + C \cos ^{2}{\left (c \right )}\right ) \cos ^{3}{\left (c \right )} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**3*(B*cos(d*x+c)+C*cos(d*x+c)**2),x)

[Out]

Piecewise((3*B*x*sin(c + d*x)**4/8 + 3*B*x*sin(c + d*x)**2*cos(c + d*x)**2/4 + 3*B*x*cos(c + d*x)**4/8 + 3*B*s
in(c + d*x)**3*cos(c + d*x)/(8*d) + 5*B*sin(c + d*x)*cos(c + d*x)**3/(8*d) + 8*C*sin(c + d*x)**5/(15*d) + 4*C*
sin(c + d*x)**3*cos(c + d*x)**2/(3*d) + C*sin(c + d*x)*cos(c + d*x)**4/d, Ne(d, 0)), (x*(B*cos(c) + C*cos(c)**
2)*cos(c)**3, True))

________________________________________________________________________________________

Giac [A]  time = 1.17141, size = 104, normalized size = 1.13 \begin{align*} \frac{3}{8} \, B x + \frac{C \sin \left (5 \, d x + 5 \, c\right )}{80 \, d} + \frac{B \sin \left (4 \, d x + 4 \, c\right )}{32 \, d} + \frac{5 \, C \sin \left (3 \, d x + 3 \, c\right )}{48 \, d} + \frac{B \sin \left (2 \, d x + 2 \, c\right )}{4 \, d} + \frac{5 \, C \sin \left (d x + c\right )}{8 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(B*cos(d*x+c)+C*cos(d*x+c)^2),x, algorithm="giac")

[Out]

3/8*B*x + 1/80*C*sin(5*d*x + 5*c)/d + 1/32*B*sin(4*d*x + 4*c)/d + 5/48*C*sin(3*d*x + 3*c)/d + 1/4*B*sin(2*d*x
+ 2*c)/d + 5/8*C*sin(d*x + c)/d